2 resultados para K EPOXIDE REDUCTASE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenosine 5′-phosphosulfate (APS) sulfotransferase and APS reductase have been described as key enzymes of assimilatory sulfate reduction of plants catalyzing the reduction of APS to bound and free sulfite, respectively. APS sulfotransferase was purified to homogeneity from Lemna minor and compared with APS reductase previously obtained by functional complementation of a mutant strain of Escherichia coli with an Arabidopsis thaliana cDNA library. APS sulfotransferase was a homodimer with a monomer M r of 43,000. Its amino acid sequence was 73% identical with APS reductase. APS sulfotransferase purified from Lemna as well as the recombinant enzyme were yellow proteins, indicating the presence of a cofactor. Like recombinant APS reductase, recombinant APS sulfotransferase used APS (K m = 6.5 μM) and not adenosine 3′-phosphate 5′-phosphosulfate as sulfonyl donor. TheV max of recombinant Lemna APS sulfotransferase (40 μmol min−1 mg protein−1) was about 10 times higher than the previously published V max of APS reductase. The product of APS sulfotransferase from APS and GSH was almost exclusively SO3 2−. Bound sulfite in the form ofS-sulfoglutathione was only appreciably formed when oxidized glutathione was added to the incubation mixture. Because SO3 2− was the first reaction product of APS sulfotransferase, this enzyme should be renamed APS reductase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adenosine 5′-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5′-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minorand Arabidopsis thaliana were overexpressed inEscherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins indicated the presence of iron-sulfur centers, whereas flavin was absent. This result was confirmed by quantitative analysis of iron and acid-labile sulfide, suggesting a 4Fe-4S cluster as the cofactor. EPR spectroscopy of freshly purified enzyme showed, however, only a minor signal at g = 2.01. Therefore, Mössbauer spectra of 57Fe-enriched APR were obtained at 4.2 K in magnetic fields of up to 7 tesla, which were assigned to a diamagnetic 4Fe-4S2+ cluster. This cluster was unusual because only three of the iron sites exhibited the same Mössbauer parameters. The fourth iron site gave, because of the bistability of the fit, a significantly smaller isomer shift or larger quadrupole splitting than the other three sites. Thus, plant assimilatory APR represents a novel type of adenosine 5′-phosphosulfate reductase with a 4Fe-4S center as the sole cofactor, which is clearly different from the dissimilatory adenosine 5′-phosphosulfate reductases found in sulfate reducing bacteria.